
MacRuby on iOS – RubyMotion review
Posted by Matt Aimonetti in ruby on May 4th, 2012

Yesterday, RubyMotion was released and let’s be honest, it is one the
best alternatives to Objective-C out there (if not the best).
RubyMotion is a commercial, proprietary fork of MacRuby that targets
iOS. This is not a small achievement, MacRuby relies on Objective C’s
Garbage Collector (libauto) which is not available on iOS. Static
compilation and new memory management solution was required to
target the iOS platform . The new runtime had to be small and
efficient. Furthermore, being able to run code on iOS isn’t enough, you
need tools to interact with the compiler, to debug, to packages
applications etc…
I don’t think anyone will contest the fact that RubyMotion is a well
done product. The question however is, “is it worth for you to invest
some money, time and energy in this product instead of using Apple’s
language and tools“. In this article, I’ll try to balance the pros and cons
of RubyMotion so you can have a better understanding of what
RubyMotion could mean for you. As a disclaimer I should say that I was
beta testing RubyMotion, that they are strong ties between RubyMotion
and the MacRuby project I’m part of and finally that having MacRuby
on iOS has been something I’ve been looking forward for a very long
time.
Over the last few months I’ve seen RubyMotion take shape and finally
hit the big 1.0. As you can see from Twitter and HackerNews, the Ruby
community is excited about being able to use their language to write
statically compiled, native iOS apps. Spoiler alert, they are right, it’s a
lot of fun.

What I like about RubyMotion:
Ruby Language
I don’t mind Objective-C, I think it’s a fine superset of C, with the
arrival of blocks, new literals and automatic memory management via
ARC, Objective-C is actually getting better over time. But frankly, it’s
not Ruby. You still have to deal with headers, you always have to
compile your code via some weird Xcode voodoo settings, testing is a
pain, the language, even with the new literals is quite verbose. On the
other hand, using Ruby syntax I can get much more flexibility, reuse
my code via mixins, easily reopen existing classes etc… At the end of
the day, I end up with some code that seems cleaner, easier to

understand and maintain even though I’m calling the same underlying
APIs. Ruby’s flexibility also allows developers to make their own higher
level APIs, take a look at some of the wrappers/helpers I wrote while
playing with RubyMotion.

MacRuby
RubyMotion is based on MacRuby, meaning that all the time and
energy invested in the project will benefit RubyMotion’s users. All the
concepts I explain in my MacRuby book apply to RubyMotion. You
don’t have to find workarounds to work with native APIs, Ruby objects
are Objective-C objects and performance is great. I do regret Apple
didn’t decide to embrace MacRuby for iOS but at the same time, even
though we lost the Open Source aspect of the project and Apple’s
backing, we gained much more flexibility and freedom on Laurent’s
part.

REPL/Interactive shell
RubyMotion doesn’t currently have a debugger, but it does have
something Objective-C developers don’t have, a REPL working with the
simulator. This feature is quite handy when debugging your
application or learning the Cocoa APIs. You can click on a visual
element in the simulator and start modifying the objects in real time in
a terminal window and see the modifications in the simulator. It
reminds me of the first time I used firebug to edit the html/css of a
web page and saw the changes in real time.

Not dependent on Xcode
Xcode is fine when you write Objective-C code, but it crashes often, it
has a complicated UI and never really worked well for MacRuby due to
the fact that Objective-C and Ruby have different requirements and the
that Xcode is not open source. It’s also fully controlled by Apple and
doesn’t provide APIs for 3rd party developers. (That said, the Xcode
team has often helped out when a new released of Xcode broke
MacRuby, so thank you guys).
Being able to use simple rake tasks to compile, simulate and deploy
applications is just really really nice. I’m sure we’ll end up with better
IDE integration, nice GUIs for some who like that, but in the meantime,
as a “hacker”, I really enjoy the simplicity of the Rake tasks and not
being forced in using a specific IDE.

Memory management
Even though ARC made memory management much easier for

Objective-C developers, when using RubyMotion you don’t have to
worry about memory (well at least not explicitly, don’t be dumb and
create a bazillion objects and hold references to them either). This
includes the CoreFoundation objects that you still have to manually
manage in Objective-C. Memory management is transparent and in
most cases it’s really nice.

What I like less about RubyMotion
Here is a list of things that are cons to using RubyMotion, note that
while the list is longer than my list of “pros”, I listed a lot of small
things. I also think that most of these issues will get solved in the next
few months.

Ruby language
There are some cases where Ruby just isn’t that great or is not an
option. Examples include dealing with API relying heavily on pointers,
when using some of the lower level APIs or when you have to interact
with C++ (video game engines for instance). The good news is that
within the same project, you can write part of your code in Objective-C
and the rest in RubyMotion. The other thing that bothers me a little bit
with writing Ruby code for iOS is that you can’t easily enforce
argument types and therefore you are losing a lot of the features
provided by Clang to the Objective-C developers. I dream of an
optionally typed Ruby — but that’s a different topic.
Another downside of using Ruby is that Ruby developers will assume
all standard libraries and gems will be compatible with RubyMotion.
This isn’t the case. You need to think of RubyMotion as only offering
the Ruby syntax (modulo a few differences). To be honest, most of the
std libs and gems aren’t that useful when writing iOS apps. Even when
I write MacRuby apps, I rarely rely on them and pick libraries designed
to work in a non-blocking, multi-threaded environment (usually ObjC
libs that I wrap).

Cocoa Touch
If you’re already an iOS/OS X developer, you know that most of the
hurdles aren’t the language syntax but the Cocoa APIs. These APIs are
what you need to interact with to create your application. Cocoa APIs
are usually much lower-level compared to what you usually see in
Python, Ruby or even Java. While they are quite consistent, the APIs still
have a stiff learning curve and currently, if you want to write iOS

applications, even if you know Ruby, you still have to learn Cocoa.
However, I do think that with RubyMotion now building a userbase, we
will start seeing more and more wrappers around these sometimes
hideous APIs.

No Xcode/IDE
There are cases where an IDE is really practical, especially when
learning new APIs. Being able to have code completion, quick access to
the documentation, instrumentation, debugging, interface builder,
refactoring tools are things that Objective-C developers might have a
hard time with when switching to RubyMotion. If you don’t know either
Ruby or Cocoa, getting started with RubyMotion might be quite hard
and you are probably not currently in the target audience.

Writing UI code by hand
In some cases, it makes sense, in other, it should be much easier. I
know that Laurent is working on a DSL to make that easier and I’m
looking forward to it. But in the mean time, this is quite a painful
exercise, especially due to the complexity of the Cocoa UI APIs. Using
Xcode’s interface builder and Storyboards is something I know a lot of
us wish we could do with RubyMotion when developing specific types
of applications.

No debugger
Again, this is eventually coming but the current lack of debugger can
be problematic at times, especially when the problem isn’t obvious.

Lack of clear target audience
It’s hard to blame a brand new product for not having clearly defined a
target audience. But as a developer I find myself wondering “when
should I use RubyMotion and for what kinds of problems?” Is
RubyMotion great for quick prototypes I can then turn into production
code? Or is good for throw away prototypes? Is it reserved for “fart and
flash light” applications? Is it ready for prime time and should I invest
and write my new awesome apps using it? Should I convert over my
existing code base over from Titanium (or whatever other alternatives
you used)? Should I use RubyMotion every time I would use Objective-
C?
I guess we will see when the first applications start hitting the app
store and people start reporting on their experience.
Documentation
I’m partially to blame here since I could have moved my butt and start

writing a book but the point is nonetheless valid. All the iOS
documentation out there is for Objective-C, all the APIs and samples
provided by Apple are obviously only for Objective-C. Thankfully, you
can use the 2 MacRuby books available out there to understand how to
convert this existing documentation into something useful, but
RubyMotion will need to provide better and more adapted
documentation for beginners. I have no doubt that this is coming
sooner than later.

Proprietary solution
RubyMotion isn’t open source and currently fully relies on the
shoulders of a single man. If unfortunately, Laurent goes out of
business or decides to do something else then we will have to rewrite
our apps in Objective-C. Using RubyMotion for a professional product
represents a significant business risk, which is exactly the same as
using proprietary technology from any vendor. Apple could also decide
to switch to JavaScript or rewrite iOS in Java and deprecate Objective-
C. Let’s just say that it is unlikely.
I usually favor open source solutions, from the programming language
I use to the OS I deploy on. This isn’t always possible and if you want
to write iOS applications, you don’t currently have a choice. I do wish
Laurent had found a way to make money while keeping the source
code open. But who knows — after he makes his first million(s), he
might change his mind.

Conclusion
I would strongly suggest you consider giving RubyMotion a try. I can
assure you that it will provide at least a few hours of ‘hacking fun’ (and
you will be able to brag about havng written your own iPhone app). It
will also help support financially someone who’s taking a risk in trying
to push mobile development to the next level.
RubyMotion is, by far, my favorite alternative to Objective-C. But it is
hard to tell, just 48 hours after its release, what people will do with it.
Can it transcend the programming language barriers and attract
Python, PHP, Java, ObjC and JavaScript developers? What is the sweet
spot for RubyMotion applications? Will it affect the native vs web app
battle? Can it make iOS development more accessible to the masses?
Only time will tell.
What do you think?

iOS, ruby, RubyMotion
29 Comments

Introduction to mruby
Posted by Matt Aimonetti in ruby on April 27th, 2012

A couple days ago, I wrote an introduction article to help developers
getting started with mruby (aka mrb).

Besides explaining the difference between mrb and the other
implementations, the article shows concrete examples to embed Ruby
inside a C software application. The article doesn’t mention a few nice
tricks such as mruby allowing you replace double by float (though still
imperfect), the possibility to replace the memory allocator and it was
even reported to me that mruby can run on the Lego Mindstorms
platform which only has 250K of memory!
mruby is still in alpha stage but it’s getting more interesting every day
and at this rate it will soon become a real alternative to Lua.
Learn how to get started with mruby now.
mruby, ruby
1 Comment

new Ruby: mruby and mobiruby Ruby
for iOS/Android
Posted by Matt Aimonetti in News, ruby on April 23rd, 2012

A few days ago, I wrote an article covering Ruby creator Matz’ new
Ruby implementation: mruby and its first related project: MobiRuby
which aims to let Ruby developers write iOS and Android applications
using their favorite language.

ruby
No Comments

Building and implementing a Single
Sign-On solution
Posted by Matt Aimonetti in Software Design, Tutorial on April 4th,
2012

Most modern web applications start as a monolithic code base and, as
complexity increases, the once small app gets split apart into many

“modules”. In other cases, engineers opt for a SOA design approach
from the beginning. One way or another, we start running multiple
separate applications that need to interact seamlessly. My goal will be
to describe some of the high-level challenges and solutions found in
implementing a Single-Sign-On service.

Authentication vs Authorization
I wish these two words didn’t share the same root because it surely
confuses a lot of people. My most frequently-discussed example is
OAuth. Every time I start talking about implementing a centralized/
unified authentication system, someone jumps in and suggests that we
use OAuth. The challenge is that OAuth is an authorization system, not
an authentication system.
It’s tricky, because you might actually be “authenticating” yourself to
website X using OAuth. What you are really doing is allowing website X
to use your information stored by the OAuth provider. It is true that
OAuth offers a pseudo-authentication approach via its provider but
that is not the main goal of OAuth: the Auth in OAuth stands for
Authorization, not Authentication.
Here is how we could briefly describe each role:
 • Authentication: recognizes who you are.
 • Authorization: know what you are allowed to do, or what you allow
others to do.
If you are feel stuck in your design and something seems wrong, ask
yourself if you might be confused by the 2 auth words. This article will
only focus on authentication.

A Common Scenario

This is probably the most common structure, though I made it slightly
more complex by drawing the three main apps in different
programming languages. We have three web applications running on
different subdomains and sharing account data via a centralized
authentication service.
Goals:
 • Keep authentication and basic account data isolated.
 • Allow users to stay logged in while browsing different apps.
Implementing such a system should be easy. That said, if you migrate
an existing app to an architecture like that, you will spend 80% of your
time decoupling your legacy code from authentication and wondering
what data should be centralized and what should be distributed.
Unfortunately, I can’t tell you what to do there since this is very
domain specific. Instead, let’s see how to do the “easy part.”

Centralizing and Isolating Shared
Account Data
At this point, you more than likely have each of your apps talk directly
to shared database tables that contain user account data. The first step
is to migrate away from doing that. We need a single interface that is
the only entry point to create or update shared account data. Some of
the data we have in the database might be app specific and therefore
should stay within each app, anything that is shared across apps
should be moved behind the new interface.
Often your centralized authentication system will store the following
information:
 • ID
 • first name
 • last name
 • login/nickname
 • email
 • hashed password
 • salt
 • creation timestamp
 • update timestamp
 • account state (verified, disabled …)
Do not duplicate this data in each app, instead have each app rely on
the account ID to query data that is specific to a given account in the
app. Technically that means that instead of using SQL joins, you will
query your database using the ID as part of the condition.
My suggestion is to do things slowly but surely. Migrate your database
schema piece by piece assuring that everything works fine. Once the
other pieces will be in place, you can migrate one code API a time until
your entire code base is moved over. You might want to change your
DB credentials to only have read access, then no access at all.

Login workflow
Each of our apps already has a way for users to login. We don’t want to
change the user experience, instead we want to make a transparent
modification so the authentication check is done in a centralized way
instead of a local way. To do that, the easiest way is to keep your
current login forms but instead of POSTing them to your local apps,
we’ll POST them to a centralized authentication API. (SSL is strongly
recommended)

As shown above, the login form now submits to an endpoint in the
authentication application. The form will more than likely include a

login or email and a clear text password as well as a hidden callback/
redirect url so that the authentication API can redirect the user’s
browser to the original app. For security reasons, you might want to
white list the domains you allow your authentication app to redirect to.
Internally, the Authentication app will validate the identifier (email or
login) using a hashed version of the clear password against the
matching record in the account data. If the verification is successful, a
token will be generated containing some user data (for instance: id,
first name, last name, email, created date, authentication timestamp).
If the verification failed, the token isn’t generated. Finally the user’s
browser is redirected to the callback/redirect URL provided in the
request with the token being passed.
You might want to safely encrypt the data in a way that allows the
clients to verify and trust that the token comes from a trusted source.
A great solution for that would be to use RSA encryption with the
public key available in all your client apps but the private key only
available on the auth server(s). Other strong encryption solutions
would also work. For instance, another appropriate approach would be
to add a signature to the params sent back. This way the clients could
check the authenticity of the params. HMAC or DSA signature are great
for that but in some cases, you don’t want people to see the content of
the data you send back. That’s especially true if you are sending back
a ‘mobile’ token for instance. But that’s a different story. What’s
important to consider is that we need a way to ensure that the data
sent back to the client can’t be tampered with. You might also make
sure you prevent replay attacks.
On the other side, the application receives a GET request with a token
param. If the token is empty or can’t be decrypted, authentication
failed. At that point, we need to show the user the login page again
and let him/her try again. If on the other hand, the token can be
decrypted, the content should be saved in the session so future
requests can reuse the data.
We described the authentication workflow, but if a user logins in
application X, (s)he won’t be logged-in in application Y or Z. The trick
here, is to set a top level domain cookie that can be seen by all
applications running on subdomains. Certainly, this solution only
works for apps being on the same domain, but we’ll see later how to
handle apps on different domains.

The cookie doesn’t need to contain a lot of data, its value can contain
the account id, a timestamp (to know when authentication happened
and a trusted signature) and a signature. The signature is critical here
since this cookie will allow users to be automatically logged in other
sites. I’d recommend the HMAC or DSA encryptions to generate the

signature. The DSA encryption, very much like the RSA encryption is an
asymmetrical encryption relying on a public/private key. This approach
offers more security than having something based a shared secret like
HMAC does. But that’s really up to you.
Finally, we need to set a filter in your application. This auto-login filter
will check the presence of an auth cookie on the top level domain and
the absence of local session. If that’s the case, a session is
automatically created using the user id from the cookie value after the
cookie integrity is verified. We could also share the session between all
our apps, but in most cases, the data stored by each app is very
specific and it’s safer/cleaner to keep the sessions isolated. The
integration with an app running on a different service will also be
easier if the sessions are isolated.

Registration
For registration, as for login, we can take one of two approaches: point
the user’s browser to the auth API or make S2S (server to server) calls
from within our apps to the Authentication app. POSTing a form
directly to the API is a great way to reduce duplicated logic and traffic
on each client app so I’ll demonstrate this approach.

As you can see, the approach is the same we used to login. The
difference is that instead of returning a token, we just return some
params (id, email and potential errors). The redirect/callback url will
also obviously be different than for login. You could decide to encrypt
the data you send back, but in this scenario, what I would do is set an
auth cookie at the .domain.com level when the account is created so
the “client” application can auto-login the user. The information sent
back in the redirect is used to re-display the register form with the
error information and the email entered by the user.
At this point, our implementation is almost complete. We can create an
account and login using the defined credentials. Users can switch from
one app to another without having to re login because we are using a
shared signed cookie that can only be created by the authentication
app and can be verified by all “client” apps. Our code is simple, safe
and efficient.

Updating or deleting an account
The next thing we will need is to update or delete an account. In this
case, this is something that needs to be done between a “client” app
and the authentication/accounts app. We’ll make S2S (server to server)
calls. To ensure the security of our apps and to offer a nice way to log
requests, API tokens/keys will be used by each client to communicate

with the authentication/accounts app. The API key can be passed using
a X-header so this concern stays out of the request params and our
code can process separately the authentication via X-header and the
actual service implementation. S2S services should have a filter
verifying and logging the API requests based on the key sent with the
request. The rest is straight forward.

Using different domains
Until now, we assumed all our apps were on the same top domain. In
reality, you will often find yourself with apps on different domains.
This means that you can’t use the shared signed cookie approach
anymore. However, there is a simple trick that will allow you to avoid
requiring your users to re-login as they switch apps.

The trick consists, when a local session isn’t present, of using an
iframe in the application using the different domain. The iframe loads
a page from the authentication/accounts app which verifies that a valid
cookie was set on the main top domain. If that is the case, we can tell
the application that the user is already globally logged in and we can
tell the iframe host to redirect to an application end point passing an
auth token the same way we did during the authentication. The app
would then create a session and redirect the user back to where (s)he
started. The next requests will see the local session and this process
will be ignored.
If the authentication application doesn’t find a signed cookie, the
iframe can display a login form or redirect the iframe host to a login
form depending on the required behavior.
Something to keep in mind when using multiple apps and domains is
that you need to keep the shared cookies/sessions in sync, meaning
that if you log out from an app, you need to also delete the auth
cookie to ensure that users are globally logged out. (It also means that
you might always want to use an iframe to check the login status and
auto-logoff users).

Mobile clients
Another part of implementing a SSO solution is to handle mobile
clients. Mobile clients need to be able to register/login and update
accounts. However, unlike S2S service clients, mobile clients should
only allow calls to modify data on the behalf of a given user. To do
that, I recommend providing opaque mobile tokens during the login
process. This token can then be sent with each request in a X-header
so the service can authenticate the user making the request. Again, SSL

is strongly recommended.
In this approach, we don’t use a cookie and we actually don’t need a
SSO solution, but an unified authentication system.

Writing web services
Our Authentication/Accounts application turns out to be a pure web
API app.
We also have 3 sets of APIs:
 • Public APIs: can be accessed from anywhere, no authentication
required
 • S2S APIs: authenticated via API keys and only available to trusted
clients
 • Mobile APIs: authenticated via a mobile token and limited in scope.
We don’t need dynamic HTML views, just simple web service related
code. While this is a little bit off topic, I’d like to take a minute to show
you how I personally like writing web service applications.
Something that I care a lot about when I implement web APIs is to
validate incoming params. This is an opinionated approach that I
picked up while at Sony and that I think should be used every time you
implement a web API. As a matter of fact, I wrote a Ruby DSL library
(Weasel Diesel) allowing you describe a given service, its incoming
params, and the expected output. This DSL is hooked into a web
backend so you can implement services using a web engine such as
Sinatra or maybe Rails3. Based on the DSL usage, incoming parameters
are be verified before being processed. The other advantage is that
you can generate documentation based on the API description as well
as automated tests.
You might be familiar with Grape, another DSL for web services.
Besides the obvious style difference Weasel Diesel offers the following
advantages:
 • input validation/sanitization
 • service isolation
 • generated documentation
 • contract based design
Here is a hello world webservice being implemented using Weasel
Diesel and Sinatra:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29
describe_service "hello_world" do |service |
 service .formats :json
 service .http_verb :get
 service .disable_auth # on by default

 # INPUT
 service .param.string :name, :default => 'World'

 # OUTPUT
 service .response do |response |
 response .object do |obj|
 obj.string :message , :doc => "The greeting
message sent back. Defaults to 'World'"
 obj.datetime :at, :doc => "The timestamp of when
the message was dispatched"
 end
 end

 # DOCUMENTATION
 service .documentation do |doc|
 doc.overall "This service provides a simple hello
world implementation example."
 doc.param :name, "The name of the person to greet."
 doc.example "<code>curl -I 'http://localhost:9292/
hello_world?name=Matt'</code>"
 end

 # ACTION/IMPLEMENTATION
 service .implementation do
 {:message => "Hello #{params [:name]}", :at =>
Time.now}. to_json
 end

end
view raw
hello_world.rb
This Gist brought to you by GitHub.
Basis test validating the contract defined in the DSL and the actual
output when the service is called:
1 2 3 4 5 6 7 8
class HelloWorldTest < MiniTest ::Unit::TestCase

 def test_response
 TestApi .get "/hello_world" , :name => 'Matt'
 assert_api_response
 end

end
view raw

gistfile1.rb
This Gist brought to you by GitHub.
Generated documentation:

If the DSL and its features seem appealing to you and you are
interested in digging more into it, the easiest way is to fork this demo
repo and start writing your own services.
The DSL has been used in production for more than a year, but there
certainly are tweaks and small changes that can make the user
experience even better. Feel free to fork the DSL repo and send me Pull
Requests.
architecture, crypto, SSO
25 Comments

Learning from Rails’ failures
Posted by Matt Aimonetti in Misc, rails, Software Design on February
29th, 2012

Ruby on Rails undisputedly changed the way web frameworks are
designed. Rails became a reference when it comes to leveraging
conventions, easy baked in feature set and a rich ecosystem. However,
I think that Rails did and still does a lot of things pretty poorly. By
writing this post, I’m not trying to denigrate Rails, there are many
other people out there already doing that. My hope is that by listing
what I think didn’t and still doesn’t go well, we can learn from our
mistakes and improve existing solutions or create better new ones.

Migration/upgrades
Migrating a Rails App from a version to the other is very much like
playing the lottery, you are almost sure you will lose. To be more
correct, you know things will break, you just don’t know what, when
and how. The Rails team seems to think that everybody is always
running on the cutting edge version and don’t consider people who
prefer to stay a few version behind for stability reasons. What’s worse
is that plugins/gems might or might not compatible with the version
you are updating to, but you will only know that by trying yourself and
letting others try and report potential issues.
This is for me, by far, the biggest issue with Rails and something that
should have been fixed a long time ago. If you’re using the WordPress
blog engine, you know how easy and safe it is to upgrade the engine
or the plugins. Granted WordPress isn’t a web dev framework, but it
gives you an idea of what kind of experience we should be striving for.

Stability vs playground zone
New features are cool and they help make the platform
more appealing to new comers. They also help shape the future of a
framework. But from my perspective, that shouldn’t come to the cost
of stability. Rails 3′s new asset pipeline is a good example of a half-
baked solution shoved in a release at the last minute and creating a
nightmare for a lot of us trying to upgrade. I know, I know, you can
turn off the asset pipeline and it got better since it was first released.
But shouldn’t that be the other way around? Shouldn’t fun new ideas
risking the stability of an app or making migration harder, be off by
default and turned on only by people wanting to experiment? When
your framework is young, it’s normal that you move fast and
sometimes break, but once it matures, these things shouldn’t happen.

Public/private/plugin APIs
This is more of a recommendation than anything else. When you write
a framework in a very dynamic language like Ruby, people will
“monkey patch” your code to inject features. Sometimes it is due to
software design challenges, sometimes it’s because people don’t know
better. However, by not explicitly specifying what APIs are private
(they can change at anytime, don’t touch), what APIs are public (stable,
will be slowly deprecated when they need to be changed) and which
ones are for plugin devs only (APIs meant for instrumentation,
extension etc..), you are making migration to newer versions much
harder. You see, if you have a small, clean public API, then it’s easy to
see what could break, warn developers and avoid migration
nightmares. However, you need to start doing that early on in your
project, otherwise you will end up like Rails where all code can
potentially change anytime.

Rails/Merb merge was a mistake
This is my personal opinion and well, feel free to disagree, nobody will
ever be able to know to for sure. Without explaining what happened
behind closed doors and the various personal motivations, looking at
the end result, I agree with the group of people thinking that the
merge didn’t turn up to be a good thing. For me, Rails 3 isn’t
significantly better than Rails 2 and it took forever to be released. You
still can’t really run a mini Rails stack like promised. I did hear that
Strobe (company who was hiring Carl Lerche, Yehuda Katz and
contracted Jose Valim) used to have an ActionPack based, mini stack

but it was never released and apparently only Rails core members
really knew what was going on there. Performance in vanilla Rails 3 are
only now getting close to what you had with Rails 2 (and therefore far
from the perf you were getting with Merb). Thread-safety is still OFF
by default meaning that by default your app uses a giant lock only
allowing a process to handle 1 request at a time. For me, the flexibility
and performance focus of Merb were mainly lost in the merge with
Rails. (Granted, some important things such as ActiveModel, cleaner
internals and others have made their way into Rails 3)
But what’s worse than everything listed so far is that the lack of
competition and the internal rewrites made Rails lose its headstart.
Rails is very much HTML/view focused, its primarily strength is to
make server side views trivial and it does an amazing job at that. But
let’s be honest, that’s not the future for web dev. The future is more
and more logic pushed to run on the client side (in JS) and the server
side being used as an API serving data for the view layer. I’m sorry but
adding support for CoffeeScript doesn’t really do much to making Rails
evolve ahead of what it currently is. Don’t get me wrong, I’m a big fan
of CoffeeScript, that said I still find that Rails is far from being
optimized to developer web APIs in Rails. You can certainly do it, but
you are basically using a tool that wasn’t designed to write APIs and
you pay the overhead for that. If there is one thing I wish Rails will get
better at is to make writing pure web APIs better (thankfully there is
Sinatra). But at the end of the day, I think that two projects with
different philosophies and different approaches are really hard to
merge, especially in the open source world. I wouldn’t go as far as
saying like others that Rails lost its sexiness to node.js because of the
wasted time, but I do think that things would have been better for all if
that didn’t happen. However, I also have to admit that I’m not sure
how much of a big deal that is. I prefer to leave the past behind, learn
from my own mistake and move on.

Technical debts
Here I’d like to stop to give a huge props to Aaron “@tenderlove”
Patterson, the man who’s actively working to reduce the technical
debts in the Rails code base. This is a really hard job and definitely not
a very glamorous one. He’s been working on various parts of Rails
including its router and its ORM (ActiveRecord). Technical debts are
unfortunately normal in most project, but sometimes they are
overwhelming to the point that nobody dares touching the code base
to clean it up. This is a hard problem, especially when projects move
fast like Rails did. But looking back, I think that you want to start
tackling technical debts on the side as you move on so you avoid

getting to the point that you need a hero to come up and clean the
piled errors made in the past. But don’t pause your entire project to
clean things up otherwise you will lose market, momentum and
excitement. I feel that this is also very much true for any legacy project
you might pick up as a developer.

Keep the cost of entry level low
Getting started with Rails used to be easier. This can obviously argued
since it’s very subjective, but from my perspective I think we forgot
where we come from and we involuntary expect new comers to come
with unrealistic knowledge. Sure, Rails does much more than it used to
do, but it’s also much harder to get started. I’m not going to argue
how harder it is now or why we got there. Let’s just keep in mind that
it is a critical thing that should always be re-evaluated. Sure, it’s
harder when you have an open source project, but it’s also up to the
leadership to show that they care and to encourage and mentor
volunteers to focus on this important part of a project.

Documentation
Rails documentation isn’t bad, but it’s far from being great.
Documentation certainly isn’t one of the Ruby’s community strength,
especially compared with the Python community, but what saddens me
is to see the state of the official documentation which, should, in
theory be the reference. Note that the Rails guides are usually well
written and provide value, but they too often seem too light and not
useful when you try to do something not totally basic (for instance use
an ActiveModel compliant object). That’s probably why most people
don’t refer to them or don’t spend too much time there. I’m not trying
to blame anyone there. I think that the people who contributed theses
guides did an amazing job, but if you want to build a strong and easy
to access community, great documentation is key. Look at the Django
documentation as a good example. That said, I also need to
acknowledge the amazing job done by many community members
such as Ryan Bates and Michael Hartl consistently providing high value
external documentation via the railscasts and the intro to Rails tutorial
available for free.

In conclusion, I think that there is a lot to learn from Rails, lots of great
things as well as lots of things you would want to avoid. We can
certainly argue on Hacker News or via comments about whether or not
I’m right about Rails failures, my point will still be that the mentioned
issues should be avoided in any projects, Rails here is just an example.

Many of these issues are currently being addressed by the Rails team
but wouldn’t it be great if new projects learn from older ones and
avoid making the same mistakes? So what other mistakes do you think
I forgot to mention and that one should be very careful of avoiding?

Updates:
 1. Rails 4 had an API centric app generator but it was quickly reverted
and will live as gem until it’s mature enough.
 2. Rails 4 improved the ActiveModel API to be simpler to get started
with. See this blog post for more info.
django, documentation, merb, migration, open source, rails, ruby
36 Comments

